Certification Trademark of ‘Manuka Honey’

A few people have asked about the move to trademark New Zealand Manuka Honey. Here is a great article from the UMF website to explain:

New Zealand Manuka


Certification Trademark for the descriptor ‘Manuka Honey’ has generated widespread local and international media coverage lately.

The move to trademark the name is a home-grown initiative aimed at ensuring that the term is only used on genuine New Zealand Manuka Honey.

It was inevitable that there would be a backlash from competitors seeking to ride a wave of success, as demand for New Zealand Manuka Honey continues to soar internationally.

Aside from the naysayers, the reaction from key stakeholders – New Zealand producers and consumers worldwide – to the certification trademark has been overwhelmingly positive. The reason for this is simple: people have come to appreciate Manuka Honey as being a distinctive honey from New Zealand that has unique attributes and benefits. Manuka is, after all, a Maori word that is universally used within New Zealand (Leptospermum scoparium). It is this plant that yields the distinctive nectar collected and transformed by bees into Manuka Honey with its highly sought after Unique Manuka Factor (UMF®) characteristics.

While this legal application has been initiated by the UMF Honey Association (UMFHA) and continues to  be championed by the organisation, the  application is being filed under the auspices of the Manuka Honey Appellation Society Incorporated (MHAS). This Society was established with the sole purpose of ensuring ownership of the name Manuka Honey was secured for New Zealand honey producers and the wider industry as a whole. Membership of the MHAS  is open to anyone and, once secured, use of the descriptor Manuka Honey will be available to anyone for use on genuine Manuka Honey produced in New Zealand.

Why is this being done?

The move is fundamental to protecting an internationally recognised premium product that is unique to New Zealand. We are seeking to secure similar protection granted to other producers around the world such as: French Champagne, Scottish Whisky and Cornish Pasties.

The increasing global demand for Manuka Honey is resulting in a variety of other honeys from different parts of the world claiming to be Manuka Honey.

Genuine Manuka Honey is sourced from the nectar of Leptospermum scoparium which is found almost exclusively in New Zealand.

Furthermore, the word ‘Manuka’ is a Maori name which in itself should be protected for the benefit of all New Zealanders.

It is vital that we safeguard this heritage and the provenance of such an iconic honey which is so intrinsically identified as being from New Zealand.

The filing for a Certification Trademark covering the ‘Manuka Honey’ name, is based on feedback from industry stakeholders and increasingly from consumers and regulatory authorities overseas.

Securing the name will give consumers greater confidence that honey purchased anywhere in the world which bears the Manuka Honey name will be what it claims to be – sourced from the nectar of Leptospermum scoparium from New Zealand.

The Certification Trademark would be openly available to everyone for use on genuine New Zealand Manuka Honey. Ownership of the Certification Trademark will be vested in an independent entity to protect it in perpetuity for the benefit of all industry participants.


Head to our shop for genuine New Zealand UMF® Mānuka Honey.

What is Leptosperin? & Why is it so important?

Leptosperin is a naturally occurring chemical found only in the nectar of Mānuka plants.  It stays stable over time, which makes testing for Leptosperin in honey a good way of identifying if it contains Mānuka , and if it is concentrated enough to be labelled as Mānuka Honey.

It was identified first (and patented) by Japanese researcher Kato in 2014. Later that year its presence in Manuka nectar was reported by the UMFHA and Analytica Laboratories at the Apiculture (Beekeeping) Industry Conference in Whanganui, New Zealand.

Leptosperin is the first of what could be a number of Manuka specific chemical markers used to identify Manuka honey for authenticity and labelling purposes.

This is a huge step toward eliminating adulteration and counterfeiting in the Mānuka Honey industry. Ka Noa are very excited to see how this testing will progress and affect our industry.

‘The UMF Honey Association presents its breakthrough finding at the Primary Production Select Committee in Wellington NZ’


Ka Noa Mānuka UMF® 20+ & UMF® 25+ are both tested for Leptosperin concentration.

Identifying Genuine Manuka Honey

How do we find genuine Manuka Honey?

There is so much confusion when looking for Genuine Manuka Honey, with reports of more being sold than is actually produced. How do we identify the genuine from the fake? What makes Manuka Honey unique?
This fantastic video from the UMFHA will help shed some light! 

Genuine Manuka Honey Bee




Manuka honey makes bacteria less resistant to antibiotics

A fantastic article, thanks to ‘the conversation’.


Lecturer in microbiology, Cardiff Metropolitan University

Manuka honey has been a firm favourite on health food shop shelves for several years now, but has long been used as a natural remedy by the indigenous Maori people of New Zealand. The dark, sticky nectar is known as the “healing honey” for a reason: it has antiviral and antibacterial properties that have been used to battle bugs for centuries.

More recently, the honey, which is made by bees from the nectar of the Manuka tree, has been employed in hospitals around the world to treat wounds. Research has found that the honey’s high sugar content, acidity and the presence of various other components like methylglyoxal, create an environment in which bacteria are unable to survive.

One of the biggest threats to human health is antibiotic resistant bacteria and as researchers around the world work to find a way to battle these bugs, we’re looking at how this sweet “superfood” could help.

Antibiotic resistance is a growing problem seen in many different types of bacteria. As treatment options continue to dwindle, it has been recognised as a global threat – one that has grown worse not only because of a rise in resistance, but also due to the decrease in both the discovery and production of new drugs. Analysts have estimated that if no new antibiotics or alternative treatment strategies are found by 2050, 10m people a year will die from antibiotic resistant infections. This will be more deaths than from any other single cause, including cancer and diabetes.

Healing honey

A British honey bee investigates a Manuka flower. Barry Batchelor / PA Archive/Press Association Images

The bacteria Staphylococcus aureus and Pseudomonas aeruginosa, commonly found in wound infections, are both associated with serious multi antibiotic resistant infections. Each is difficult to treat and can lead to complications, and death. The fact that they are resistant to antibiotics often means there are limited treatments available.

A number of options to combat resistance are currently being investigated, however. One of which is the use of natural products, either alone or in combination with antibiotics. Indeed, many natural products, such as honey, green tea, garlic and turmeric, have been identified over the years as potential antimicrobial agents.

Medical application

In ancient times, the type of honey used to treat a person often depended on their geographical location and the type of ailment. Manuka, for example, was used as a topical ointment for wounds and ulcers by the Maori people. Much of the evidence for the effectiveness of the honey treatment was anecdotal, however, with no real research to rely on.

These days, standardised sterile medical grade Manuka honey is available, and there is considerable evidence demonstrating its antibacterial effect against a wide range of infections. Furthermore, we now have explanations for the different process by which this particular honey can kill both Staphylococcus aureus and Pseudomonas aeruginosa.

Laboratory testing of antibiotics – such as oxacillin, rifampicin, tetracycline and colistin – has revealed that the drugs have an increased potency against either Pseudomonas aeruginosa or methicillin-resistant Staphylococcus aureus (MRSA) when combined with very low concentrations of medical grade Manuka honey. When used to fight MRSA, the honey damages the bacterial genes involved in creating resistance to oxacilin, which then allows oxacillin to better kill the bacteria. The specific mechanism by which Manuka honey restores the power of the other three antibiotics is not yet clear, though several different research groups have now reported the improved effectivenessof antibiotics when combined with honey.

Working together

Pseudomonas aeruginosa. Kateryna Kon/Shutterstock

Importantly, many different components within honey have been identified as having activity: this means that these components work together to target different parts of the bacteria, making it much more unlikely that bacteria will develop a resistance to honey in the way they do to antibiotics, which tend to have a single target that the bacteria evolve to bypass.

As some infections are resistant to multiple antibiotics, some treatments combine two or more drugs to battle infections. Our research suggests that Manuka honey has the potential to be used in a similar way, combined with antibiotics. As most infections come from a mixture of different bacteria, identifying an antibiotic which works better against them when combined with honey would be the most useful. We have successfully seen this effect, using honey to improve the efficacy of the drug tetracycline against both Pseudomonas aeruginosa and MRSA.

Future research is obviously needed before the treatment can be used in hospitals, however. We need to test a larger range of antibiotic resistant bacteria and see whether the medical grade honey has similar effects on different species likely to be found together in an infection, when combined with a range of drugs. It will also be essential to see if these effects are reproducible in a clinical setting, and not just in the laboratory.

But what we have seen is very promising. The fact that medical grade Manuka honey could potentially be used to increase the potency of some commonly used antibiotics against bacteria could change the way we view other “traditional” remedies, too.




Spring has arrived in New Zealand and with it, the Manuka flower has started to blossom.

After months of preparation the team at Ka Noa are very excited to bring you the Ka Noa Manuka website.

Not only will this be a space for purchasing high quality Manuka products, we will also be running an active journal, documenting our journey as we meet with New Zealand Beekeepers, explore the ground breaking research involved with Manuka Honey and develope vital relationships with our customers.

We hope to share in your own experiences with Manuka and will endeavour to answer any questions you may have in regards to Health and Wellbeing, New Zealand and Manuka.

We can’t wait for you to try our product and invite you to be a part of our journey.


The team at Ka Noa.